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Abstract: The development of real-time, wide-field and quantitative diffuse optical imaging
methods to visualize functional and structural biomarkers of living tissues is a pressing need
for numerous clinical applications including image-guided surgery. In this context, Spatial
Frequency Domain Imaging (SFDI) is an attractive method allowing for the fast estimation of
optical properties using the Single Snapshot of Optical Properties (SSOP) approach. Herein, we
present a novel implementation of SSOP based on a combination of deep learning network at the
filtering stage and Graphics Processing Units (GPU) capable of simultaneous high visual quality
image reconstruction, surface profile correction and accurate optical property (OP) extraction
in real-time across large fields of view. In the most optimal implementation, the presented
methodology demonstrates megapixel profile-corrected OP imaging with results comparable
to that of profile-corrected SFDI, with a processing time of 18ms and errors relative to SFDI
method less than 10% in both profilometry and profile-corrected OPs. This novel processing
framework lays the foundation for real-time multispectral quantitative diffuse optical imaging for
surgical guidance and healthcare applications. All code and data used for this work is publicly
available at www.healthphotonics.org under the resources tab.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Spatial Frequency Domain Imaging (SFDI) is a relatively inexpensive diffuse optical imaging
method allowing quantitative, widefield and rapid measurement of optical properties [1–4]. The
capabilities of SFDI have been demonstrated across a large number of biomedical applications
including small animal imaging, burns wound assessment, skin flap monitoring, early stage
diabetic foot ulcers diagnosis, among others [5–9]. However, because the standard implementation
of SFDI requires the sequential acquisition of several sinusoidal patterns of light, its potential for
clinical applications that require real-time feedback, such as intraoperative surgical guidance, is
limited.
With the aim of deploying such technology in surgical settings, Single Snapshot imaging of

Optical Properties (SSOP) was introduced as a new approach for performing SFDI in real-time.
Conceptually, SSOP works by reducing the total number of necessary acquisitions to a single
image – thereby increasing the speed of acquisition. First proofs of concept demonstrated the
feasibility of real-time optical properties imaging (i.e. faster than 25 images per second) with
high accuracy (i.e. with less than 10% error compared with SFDI). However, the approach
initially suffered from both loss of image resolution and undesirable artifacts due to the single
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image acquisition strategy [10,11]. Over the years, the SSOP method has been increasingly
improved upon to enhance the technique’s reconstructive visual quality and capabilities. Though
at present current state-of-the-art SSOP implementations, while capable of acceptable visual
quality retrieval in real-time, still suffer from edge artifacts, exhibit lower resolution than SFDI
and do not include sample profile correction [12]. These limitations can mainly be attributed to a
conventional processing workflow.
To overcome these limitations, deep learning (DL) and Graphics Processing Units (GPU)

computation provide promising alternatives to conventional processing for diffuse optical imaging.
Deep Neural Networks (DNNs), and more particularly Convolution Neural Networks (CNNs),
have become ubiquitous in applications such as image classification, image segmentation, image
translation, natural language understanding or speech recognition [13–15]. Over the last few
years, they have also greatly impacted the field of biomedical optics [16–18]. Though, if these new
methodologies have provided excellent performances, they are typically not amenable to real time
processing due to the increased depth of the networks employed and software implementations.
In this regard, the use of GPU-accelerated DL has demonstrated remarkable computational speed
increases with regards to model inference in latency sensitives applications [19,20].
In this work, we present a real-time, wide-field and quantitative optical properties imaging

implementation of SSOP that includes 3D profile correction and high visual quality reconstruction
via GPU-accelerated CNNs. In particular, the workflow detailed herein is used to extract
modulated images and the 3D profile of the sample concurrently from a single SSOP image
input. A custom-made GPU implementation of the network, using NVIDIA’s cuDNN library,
optimizes the network’s inference speed – exhibiting speeds comparable to that of the fastest
existing approaches with enhanced accuracy. All together, we demonstrate profile corrected
optical properties imaging in real-time with visual quality similar to SFDI and errors less than
10% in absorption and reduced scattering.

2. Materials and methods

2.1. Spatial frequency domain imaging

2.1.1. State of the art in SSOP

The standard SFDI method requires the sequential acquisition of several spatially-encoded images
for the retrieval of optical property maps. The acquisition is typically performed using at least
at two different spatial frequencies (e.g., fx = 0 and 0.2mm−1) and 3 phase shifts or more for
improved accuracy and visual quality (e.g. 7 phases) [4,21]. The patterns are generated and
projected using a Digital Micromirror Device (DMD) and captured with a camera as depicted in
Fig. 1. (A). Following the acquisition, the images are used to obtain the amplitude modulation
at each spatial frequency, e.g. MDC for fx = 0mm−1 and MAC for fx = 0.2mm−1. From these
measurements, the diffuse reflectance images Rd,DC and Rd,AC are obtained through calibration
with a material of known optical properties. Finally, the measured reflectance allows for the
pixel-wise estimation of the absorption and reduced scattering coefficients (µa, µs’) across the
image via the resolution of the inverse problem – such as with precomputed high density lookup
tables (LUTs) generated using White Monte Carlo simulations [22].

In contrast to conventional SFDI, which necessitates a minimum of six images for quantification,
SSOP is an alternative SFDI implementation capable of fast optical property extraction via
acquisition of a single high spatial frequency image (e.g., fx = 0.2mm−1) – reducing the total
acquisition time substantially by a few-fold, enabling real-time acquisition [4]. Amplitude
modulations are extracted by filtering directly in the Fourier domain with both a low and high
pass filter [10–12]. The general workflow is then similar to that of SFDI (illustrated in Fig. 1.
(B)). Of importance, one should note that demodulation is the key step with which the resulting
accuracies of both OP map retrieval and visual quality depend. Details of the acquisition,
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Fig. 1. (A) Schematics of a SFDI/SSOP imaging system. (B) SFDI/SSOP processing
workflow.

demodulation and processing typically used in SFDI and SSOP are provided in [3,4], and details
about creating a custom SFDI system and processing code are available on www.openSFDI.org
and www.healthphotonics.org [23].

2.1.2. SSOP demodulation

Typically, SSOP demodulation is performed either line by line [10], or in 2D spatial Fourier
domain using rectangular low and high pass filters [11]. Recent developments in 2D spatial
Fourier domain include using anisotropic low pass filtering based on sine windows and anisotropic
high pass filtering based on Blackman windows [12]. This approach reported accuracies under
8.8% in absorption (µa) and 7.5% in reduced scattering (µs’). While this SSOP implementation
was successfully used to perform real time oxygenation measurements [24], it is still affected
by edge discontinuity, has a lower resolution than standard SFDI and does not include profile
correction for the sample.

2.1.3. 3-dimensional profile correction applied to SFDI

Optical properties measurements of non-flat samples through SFDI conventionally suffer from
inaccuracies due to intensity variations across the sample surface. To account for these errors,
3D profile correction methods for SFDI have been implemented by measuring the profile using
structured-light profilometry [25,26] and correcting for its effect [27]. Several correction methods
have been proposed for SFDI, all using either phase shifting profilometry or Fourier-based
profilometry. Overall, they have illustrated high correction accuracy for large angles of tilt,
from 40 up to 75 degrees depending on the method [11,27–29]. However, the use of a single
image SSOP acquisition approach leads to lower profile accuracy that significantly affects the
accuracy of retrieved OPs [11]. The main focus of the work herein is to leverage a novel deep
learning approach to enable profile-corrected SSOP imaging in real-time and for complex non-flat
samples.

2.2. Deep learning approaches to SFDI

2.2.1. State of the art

Several groups have focused their efforts on developing deep learning and machine learning
approaches for SFDI or SSOP to improve accuracy, visual quality and/or speed. A random forest
regression algorithm was developed for estimating optical properties in the spatial frequency
domain, trained on Monte-Carlo simulations data [30]. The algorithm “learns” the nonlinear

http://www.openSFDI.org
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mapping between diffuse reflectance at two spatial frequencies, and optical properties of the
tissue, with the goal of reducing the computational complexity when a high density pre-computed
LUT is used. Using this method, optical properties could be obtained over a 1-megapixel image
in 450 ms with errors of 0.556% in µa and 0.126% in µs’.

Following, a DNN-based framework was proposed for multi-spatial frequency processing SFDI
[31]. This network, a Multi-Layered Perceptron (MLP), outperformed other classic inversion
methods (iterative method and nearest search) in terms of speed with computation times of 5ms for
100× 100 pixels and 200ms for 696× 520 pixels, using a 5 spatial frequencies SFDI acquisition
and substantially reducing measurement uncertainties compared to the widely used 2 frequency
SFDI processing method. More recently, CNNs have been introduced for diffuse optical imaging
owing to their remarkable performance enhancements across imaging applications compared
with MLPs [32]. In the case of SFDI, a Generative Adversarial Networks (GANs) framework
(named “GANPOP”) has been reported for the retrieval of optical properties directly from single
input images with high accuracy [33]. In this work, SFDI was used to obtain ground-truth optical
properties and the model developed took approximately 40ms to process a 256× 256 pixel image
using an NVIDIA Tesla a P100 GPU Accelerator.

Both the random forest and MLP works have a commonality in that they both estimate optical
properties from diffuse reflectance – though, GANPOP bypasses the demodulation step and
retrieves optical properties directly from calibrated SSOP input. In addition, all these methods
have been developed with a focus on providing a more accurate optical properties imaging ability,
and though GANPOP illustrates partially profile-corrected OP retrieval, no DL-based workflow
to date retrieves profilometry directly. Further, both the MLP and GANPOP’s generator are
comprised of a relatively large parametric size (on the order of 1× 106 and 8× 107 weights,
respectively). In turn, these relatively large DL models can be both computationally burdensome
and memory intensive, limiting their use for real time applications. In addition, though GANs
have been increasing in popularity across applications of computer vision, they are notoriously
problematic with regards to hyperparameter tuning, stable convergence and computational
demand for proper model training [34]. Finally, no prior DL-based approach has actually been
applied in real-time.

2.2.2. The proposed method

Inspired by these previous developments and results, we propose herein to combine GPU
accelerated computing [24] with efficient DL architectures applied for a seamless and user-friendly
SSOP processing methodology – allowing for real-time image reconstruction of mega-pixel
images with high accuracy and visual quality along with direct retrieval of profilometry. The
method consists of the following steps:
U-NET 1: Demodulation: A first small-size U-NET (less than 2× 104 parameters) is used

to get demodulation images (MDC and MAC), instead of directly map raw input data to optical
properties. Since the network has dedicated weights according to the spatial frequency, both
higher visual quality and more accurate optical properties can be obtained, in contrast with a
Fourier filtering method with fixed spatial frequency parameters.
U-NET 2: Profilometry: A second small-size U-NET (less than 2× 104 parameters), identical

in structure to the first one, is used to get wrapped phase and obtain the profile, avoiding the use
of Fourier domain 3D profilometry that leads to poor accuracy due to its dependency to spatial
frequency. In our implementation, the real and imaginary part are extracted from the network to
compute the wrapped phase by mean of atan2() function [35].
Real-time profile-corrected optical properties imaging: To reduce the inference time of both

U-NETs, a custom-made GPU implementation of the networks was undertaken using the CUDA
deep learning library cuDNN. Following the use of the two computationally inexpensive U-NETs
described above, (used for demodulation and profilometry, respectively), the extraction of optical
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properties can be performed along with profile correction at high speed using a previously
developed real-time optical properties GPU processing code [24]. The use of the GPU-accelerated
twin U-NET framework detailed above, followed by a GPU-optimized precomputed lookup table
inversion method has a strong potential for delivering real-time and high visual quality SSOP
imaging capabilities to many who would otherwise be unable to utilize more computationally
burdensome approaches.

2.3. Deep learning network design

2.3.1. Structure

The general network architecture is illustrated in Fig. 2. and is inspired by the U-Net architecture
[36]. It is a n-dimensional network (“Line U-NET” when n= 1 and “Image U-NET” when n= 2).
It consists of a contracting path of 4 stages (left side) and an expansive path of 4 stages (right side).
The expansive path is a fork and has 2 outputs. The contracting path consists of the repetition of
a 7× 7n−1 convolution layer (padded convolution), each followed by a Tanh activation layer and a
2× 2n−1 max pooling layer (with stride 2). The number of feature channels is double at each
level starting by 1 feature channel at stage 1. Every stage in the expansive path consists of an
up-sampling 2× 2n−1 layer followed by a 3× 3n−1 deconvolution layer that halves the number
of feature channels, a concatenation with the corresponding feature map from the contracting
path, and a 7× 7n−1 convolution layer followed by a Tanh activation layer. At the final stage, a
7× 7n−1 convolution layer with linear activation is employed to retrieve the output. In total, the
twin U-NET architecture is comprised of either 3064 or 18886 weights (according to n equal to 1
or 2, respectively) for 17 convolutional layers. The python code for each architecture is available
at www.healthphotonics.org in the “resources” section.

Fig. 2. Detailed architecture of the deep learning network architecture

2.3.2. Training

The network was implemented with Tensorflow using Keras backend and is compiled with mean
squared error (MSE) as loss function and Adam as optimizer [42]. The training starts with a
learning rate of 0.001 and employs a learning rate reduction (factor of 1.11) if there is no loss
improvement after 15 epochs. The model is trained for 900 epochs using NVIDIA GTX1080Ti

http://www.healthphotonics.org


Research Article Vol. 11, No. 10 / 1 October 2020 / Biomedical Optics Express 5706

computation power in less than 2 hours. The training dataset consists of a total of 100 images
that are 1024× 1024 pixels in size composed of a combination of 7-phases SFDI acquisitions
(for both accuracy and visual quality) of hands (N= 60 from 10 different hands placed in various
orientations), silicon-based tissue mimicking phantoms (N= 20 from 18 different phantoms
in various orientations) and ex vivo pig organs (N= 20 from 6 different organs). A 5-fold
cross-validated was performed on the network and no signs of overfitting was observed.

2.4. GPU C CUDA implementation

Our custom SSOP processing code (using C CUDA) is made with Microsoft Visual Studio and
NVIDIA CUDA toolkit environment. Based on the previous developed code [24], our work
focused on the GPU implementation of the novel demodulation via the previously described
twin U-NET workflow. To perform model inference, there are three options: using the training
framework itself (convention), using TensorRT [39] or writing a custom code to execute the
network using cuDNN low-level libraries and math operations [40,41]. We choose the latter
for its high efficiency compared to other solutions. Since the network is a succession of many
convolution, max pooling, up-sampling and concatenation, layers will be presented only once.

2.4.1. Convolution

Before one uses cuDNN functions to describe and execute a network, a handle must be created
using cudnnCreate. A convolution consists of a description part and an execution part.
- Description part: (1) an input tensor is created with cudnnCreateTensorDescriptor and

cudnnSetTensor4dDescriptor, this tensor memory space is then allocated; (2) the filter is de-
scribed with cudnnCreateFilterDescriptor and cudnnSetFilter4dDescriptor, a memory space
is allocated and the weights loaded; (3) the type of convolution is specified using cudnnCre-
ateConvolutionDescriptor and cudnnSetConvolution2dDescriptor, to get the convolution
output dimension cudnnGetConvolution2dForwardOutputDim is called; (4) a second tensor
is created as previously for the convolution output; (5) the activation is set with cudnnCre-
ateActivationDescriptor and cudnnSetActivationDescriptor; (6) a third tensor is created as
previously to store the output after activation; (7) the optimized convolution algorithm is found
with cudnnGetConvolutionForwardAlgorithm and the required work space for its execution
with cudnnGetConvolutionForwardWorkspaceSize, this space is then allocated.

- Execution part: cudnnConvolutionForward is called first to execute the convolution, follow
by a custom made add_bias_gpu kernel. Finally, to finish the execution, an activation function
cudnnActivationForward is called.

2.4.2. Max pooling

The max pooling operation is also comprised of a description and an execution part: (1) it
requires an input tensor (e.g., the previous activation tensor); (2) a description of the pooling
is created via cudnnCreatePoolingDescriptor and cudnnSetPooling2dDescriptor and the
pooling output dimension is defined with cudnnGetPooling2dForwardOutputDim; (3) a
tensor is pre-allocated to store the output after pooling; (4) lastly, the max pooling is performed
by calling cudnnPoolingForward.

2.4.3. Upsampling and concatenation

Upsampling and concatenation layers are custom made kernels since these two functions are not
currently implemented on cuDNN’s library. With each of these bricks, the entire network is then
built according to the structure described in the previous section.
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2.4.4. GPU configuration

Processing times depending strongly on the GPU configuration. For each custom-made kernel,
one thread was created for each pixel, broke down into blocks of 64 threads allowing to have a
GPU occupancy of 100%.

2.5. Imaging system used for experiments

The instrumental setup (see Fig. 1. (A)) was custom-built using a DMD (Vialux, Germany) for the
projection of custom patterns, fiber-coupled to a 665 nm laser diode (LDX Optronics, Maryville,
Tennessee). The laser diode was mounted using a temperature-controlled mount (TCLDM9,
Thorlabs, Newton, New Jersey). Diode intensity was controlled using current controllers
(TDC240C, Thorlabs, Newton, New Jersey) and temperature controlled using thermoelectric
cooler controllers (TED200C, Thorlabs, Newton, New Jersey). The projection system projects a
sine wave pattern over a 175 × 175 mm2 field of view at 45 cm working distance. Images of 1024
× 1024 pixels size are acquired using a scientific monochrome 16 bits sCMOS camera (PCO AG,
pco.edge 5.5, Kelheim, Germany). Polarizers (PPL05C; Moxtek, Orem, Utah), arranged in a
crossed configuration, were used to minimize the contribution from specular reflections at the
surface of the sample. The projection system was set at an angle of θ= 4° to allow profilometry
measurement [27]. A workstation with the following characteristics was used for controlling the
acquisition and the processing: Intel i7-7800x 3.5GHz central processing unit, 16 GB of RAM,
and an NVIDIA GeForce GTX1080Ti GPU (3584 Cores CUDA, 11 GB of RAM).

2.6. Training set

20 images of the combination of 18 different phantoms (specifications provided below), 60 images
of 10 different hands (Caucasian and Black men and women) in various orientations and 20 images
from 6 different ex vivo pig organs in various configurations and orientations (intestine, colon,
stomach, liver, esophagus and pancreas) were used to train the network. Silicone-based optical
phantoms were built using titanium dioxide (TiO2) as a scattering agent and India ink as an absorb-
ing agent [37,38]. A total of 18 phantoms were used with the following absorption and reduced
scattering properties at 665nm: [(0.01,0.85); (0.01,1.13); (0.01,1.39); (0.01,1.58); (0.02,0.71);
(0.02,0.80); (0.02,1.71); (0.05,0.92); (0.05,1.50); (0.06,1.31); (0.07,1.15); (0.08,0.78); (0.11,1.11);
(0.12,0.80); (0.12,0.85); (0.14,0.83); (0.21,1.18); (0.23,0.70)] all expressed in mm−1. A calibra-
tion phantom was made with a large size (210mm × 210mm × 20mm) and with absorption of
µa= 0.01mm−1 and reduced scattering µs’=1.1mm−1 at 665 nm. All phantoms optical properties
were referenced using a time domain photon counting system.

2.7. Validation and performance assessment

Our validation dataset consisted of the images of 4 different hands and 20 images from 6
different ex vivo pig organs in various configurations and orientations (intestine, colon, stomach,
liver, esophagus and pancreas). None of the validation images were used for training. Images
were acquired via 7-phase SFDI using 4 spatial frequencies (0.1mm−1, 0.2mm−1, 0.3mm−1,
0.4mm−1) to extract optical properties. These images were processed using four different
processing modalities: SFDI, SSOP Filtering [12], SSOP Deep Learning (noted “SSOP DL
conv”) with convolutions of 7× 1 and 7× 7. For the quantitative performance assessment, 3D
profile and optical properties maps obtained using SSOP methods at each spatial frequency were
compared to that of 7-phase SFDI. These comparisons were undertaken by measuring the mean
absolute percentage error given by the following Eq. (1) where N and M refer to image size
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(number of pixels in x and y directions):

Error(%) =
1

N ×M

N−1∑
n=0

M−1∑
m=0

�����100 × ResultREFERENCEn,m − ResultTESTn,m

ResultREFERENCEn,m

����� (1)

For the image visual quality assessment, structural similarity index (SSIM) of 3D profile and
optical properties maps obtained using SSOP methods at each spatial frequency were compared
to that of 7-phase SFDI.

For the GPU implementation performance assessment, NVIDIA Nsight environment was used
to trace the C CUDA code processing time. This time does not account for the transfer time
between the CPU and the GPU memories (which is 338 µs for a 1024× 1024 pixels size image)
on our system. The evaluation of the quality of the images was performed visually to consider
degradations, such as ripples and edge artifacts. Finally, a movie of a moving hand was acquired
at fx = 0.2mm−1 with rotation and translation to compare and contrast the three SSOP analytic
method’s real-time capabilities.
Note that the codes, for each demodulation method (SFDI 7 phases, SSOP Filtering, SSOP

DL conv 7× 1 and SSOP DL conv 7× 7), and all data (calibration phantoms, hands, and ex vivo
sample) used in this work are available at www.healthphotonics.org in the “resources” section.

3. Results

The 24 images of the test dataset were processed as described before with the four different
modalities. To illustrate these results, we show in Fig. 3., Fig. 4. and Fig. 5. respectively along
with their pixel-wise percentage error map the results of the measured profile, profile-corrected
absorption coefficient and profile-corrected reduced scattering coefficient at each spatial frequency
obtained on a hand. These images allow one to both qualitatively appreciate and quantitatively
assess each SSOP processing method’s reconstructive performance and against 7-phase SFDI.
We also present in Fig. 6 the results obtained at spatial frequency fx = 0.2mm−1 on another hand
image and 4 images of ex vivo porcine organs that illustrate how shape variety influence the
accuracy of the optical properties extracted via each method.

Fig. 3. Profile measurements: 3D profile maps obtained at four spatial frequencies with
SFDI method and three SSOP processing methods along with their corresponding error
maps. From left to right: Raw input data, SFDI reference, SSOP Filtering, SSOP Deep
Learning Convolution (DL conv) 7× 1, SSOP Deep Learning Convolution 7× 7, SSOP
Filtering percentage error, SSOP Deep Learning Convolution 7× 1 percentage error, SSOP
Deep Learning Convolution 7× 7 percentage error.

http://www.healthphotonics.org
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Fig. 4. Profile-corrected absorption measurements: profile-corrected absorption coefficient
maps obtained at four spatial frequencies with SFDI method and three SSOP processing
methods along with their corresponding error maps. From left to right: Raw input data,
SFDI reference, SSOP Filtering, SSOP Deep Learning Convolution (DL conv) 7× 1, SSOP
Deep Learning Convolution 7× 7, SSOP Filtering percentage error, SSOP Deep Learning
Convolution 7× 1 percentage error, SSOP Deep Learning Convolution 7× 7 percentage
error.

Fig. 5. Profile-corrected reduced scattering measurements: profile-corrected reduced
scattering coefficient maps obtained at four spatial frequencies with SFDI method and three
SSOP processing methods along with their corresponding error maps. From left to right:
Raw input data, SFDI reference, SSOP Filtering, SSOP Deep Learning Convolution (DL
conv) 7× 1, SSOP Deep Learning Convolution 7× 7, SSOP Filtering percentage error, SSOP
Deep Learning Convolution 7× 1 percentage error, SSOP Deep Learning Convolution 7× 7
percentage error.
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Fig. 6. Profile-corrected optical properties (absorption and reduced scattering) measure-
ments obtained at fx = 0.2mm−1 on a hand, an intestine, an intestine slice, a colon and a
liver with SFDI method and three SSOP processing methods along with their corresponding
error maps. From left to right: Raw input data, SFDI reference, SSOP Filtering, SSOP Deep
Learning Convolution (DL conv) 7× 1, SSOP Deep Learning Convolution 7× 7, SSOP
Filtering percentage error, SSOP Deep Learning Convolution 7× 1 percentage error, SSOP
Deep Learning Convolution 7× 7 percentage error.
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3.1. Image quality

SFDI: It is important for one to appreciate the reconstructive visual quality retrieved through
the use of 7-phase SFDI. The 7-phase acquisition method improves visual quality compared to
3-phase and maintains better accuracy despite a signal to noise ratio decreasing when spatial
frequency increases. It has been selected as the ground-truth for all error comparison herein.
SSOP Filtering: SSOP filtering results demonstrate an improvement in image resolution that

corresponds with increased spatial frequency. This can be appreciated in the absorption coefficient
maps by the vascular structure, which appears more clearly, and by the notable reduction of edge
artifacts. Additionally, in the profile and reduced scattering coefficient maps, the improvement
in resolution with increasing spatial frequency can be observed – with better definition of the
hand shape and a reduction of the edge discontinuity effects. Both observations are particularly
noticeable on percentage error maps.
SSOP DL: For the two SSOP DL methods, while still affected at low spatial frequency

(0.1mm−1), the image degradation is significantly reduced compared to the SSOP Filtering
approach. A much better definition of the hands and organs shape and a reduction of the edge
discontinuity effect can be clearly noticed (supported by SSIMmeasurements, Table 1). Moreover,
the SSOP DL Conv 7× 7 method mimics SFDI image edges with near-perfection in stark contrast
with SSOP DL Conv 7× 1, which illustrates slightly degraded results.

Table 1. Structural similarity index of the 3D profile map and the optical properties map for all the
validation dataset

Structural similarity index (SSIM)

Full image Spatial frequency SSOP Filtering SSOP DL Conv 7× 1 SSOP DL Conv 7× 7

3D Profile

0.1mm−1 0.44± 0.16 0.49± 0.17 0.50± 0.16

0.2mm−1 0.47± 0.15 0.50± 0.16 0.51± 0.16

0.3mm−1 0.47± 0.15 0.51± 0.15 0.52± 0.15

0.4mm−1 0.48± 0.15 0.51± 0.15 0.52± 0.15

Absorption

0.1mm−1 0.96± 0.02 0.98± 0.03 0.98± 0.01

0.2mm−1 0.98± 0.01 0.98± 0.03 0.98± 0.01

0.3mm−1 0.97± 0.02 0.97± 0.03 0.98± 0.02

0.4mm−1 0.96± 0.02 0.96± 0.03 0.97± 0.02

Reduced scattering

0.1mm−1 0.75± 0.08 0.84± 0.07 0.86± 0.06

0.2mm−1 0.75± 0.07 0.81± 0.08 0.83± 0.06

0.3mm−1 0.71± 0.08 0.76± 0.09 0.78± 0.07

0.4mm−1 0.67± 0.10 0.71± 0.10 0.74± 0.09

To quantify this analysis, we have calculated the structural similarity (SSIM) index versus
7-phase SFDI images (ground-truth) – results of which are provided in Table 1. The first
observation is that, compared to the visual quality of the SFDI images at any spatial frequencies,
we find a decreasing similarity index (hence a decrease in visual quality): (1) SSOP DL Conv
7× 7, (2) SSOP DL Conv 7× 1 and (3) SSOP Filtering. The similarity index varies according to
the evaluated parameter but remains consistent with our visual analysis – with the exception of
specific high spatial frequency conditions.

3.2. Quantitative analysis

Mean absolute percentage error of the full image for all the 24 samples SSOP error maps
are computed verses 7-phase SFDI and reported in Table 2 (in mean± standard deviation) for
quantitative assessment.
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Table 2. Mean absolute percentage error (%) of the 3D profile map and the optical
properties map for all the validation dataset

Mean absolute percentage error (%)

Full image
Spatial

frequency
SSOP Error
Filtering

SSOP Error
DL Conv 7× 1

SSOP Error
DL Conv 7× 7

3D Profile

0.1mm−1 17.6± 6.1 16.7± 6.3 16.6± 6.5

0.2mm−1 11.9± 5.1 12.3± 6.4 11.3± 5.8

0.3mm−1 10.1± 5.3 11.0± 6.6 10.1± 5.8

0.4mm−1 9.8± 5.8 10.2± 6.4 9.5± 5.9

Absorption

0.1mm−1 12.6± 4.1 9.4± 6.9 9.4± 3.5

0.2mm−1 8.7± 2.6 8.6± 7.0 7.7± 2.8

0.3mm−1 9.9± 3.0 10.8± 7.6 9.5± 4.0

0.4mm−1 11.8± 3.8 12.4± 8.8 12.0± 5.6

Reduced scattering

0.1mm−1 11.3± 3.2 8.3± 4.8 7.5± 2.7

0.2mm−1 9.3± 2.5 8.5± 6.6 7.6± 2.6

0.3mm−1 10.7± 3.1 11.1± 9.3 9.9± 3.8

0.4mm−1 12.5± 3.8 13.1± 10.6 12.3± 5.4

Profile: Generally, 3D profile errors decrease when spatial frequency increases: SSOP DL
Conv 7× 7 demonstrated the best results with errors as low as 9.5± 5.9% followed by SSOP
Filtering that gave errors as low as 9.8± 5.8% and SSOP DL Conv 7× 1 with errors as low as
10.2± 6.4%.

Profile-corrected absorption: Profile-corrected absorption coefficients illustrate a decreasing
error trend along with spatial frequency until 0.2mm−1 and an increase at 0.3mm−1: SSOP DL
Conv 7× 7 still performs best, with errors as low as 7.7± 2.8%, followed by SSOP DL Conv
7× 1 with errors as low as 8.6± 7.0% and SSOP Filtering with errors as low as 8.7± 2.6%.

Profile-corrected reduced scattering Profile-corrected reduced scattering coefficient errors
increase with spatial frequency. SSOP DL Conv 7× 7 still performs better with errors as low
as 7.5± 2.7%, followed by SSOP DL Conv 7× 1 with errors as low as 8.3± 4.8% and SSOP
Filtering with errors as low as 9.3± 2.5%.

Overall, qualitative and quantitative analyses using both image-to-image similarity and pixel-
wise error illustrate the edge improvements provided by the twin U-NET deep learning workflow
as well as an enhanced accuracy in optical properties extraction.

3.3. Processing time

The analysis of the GPU processing times for the three different SSOP implementations is
summarized in Table 3 on images having a size of 1024× 1024 pixels.

Table 3. GPU processing time in milliseconds for the three different SSOP
processing method

Image 1024 x1024
GPU Processing time (in ms)

SSOP Filtering SSOP DL Conv 7× 1 SSOP DL Conv 7× 7

Get MDC &MAC 0.51 6.7 8.8

Get Profile 0.41 6.9 9.0

Get RDC & RAC 0.12 0.12 0.12

Get µa & µ′s 0.09 0.09 0.09

TOTAL 1.13 13.81 18.01
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On our workstation, the SSOP Filtering method was the fastest with 1.13ms, followed by Deep
Learning with 7× 1 convolution with 13.81ms and finally Deep Learning with 7× 7 convolution
with 18.01ms. As expected, the computation time to obtain diffuse reflectance and to extract
optical properties is the same for all method (using the same GPU-optimized LUT). Thus, the
SSOP deep learning methods are only limited by the network inference time. Overall, since a
video rate of 25 images per seconds is limited at 40ms, all three processing methods demonstrate
capabilities to be used in real-time environments. Note that processing time for the 7 phase SFDI
method is not reported since the method is not suited for real-time imaging.

Finally, to compare all three SSOP approaches, a movie of a hand was acquired (Visualization
1, single-frame excerpt from the video recording shown in Fig. 7). In this movie, one can notice
the edge discontinuity effect when using SSOP Filtering and how it depends on the hand position.
In contrast, the SSOP Deep Learning workflow presented herein significantly reduces these
effects and reconstructs OPs with high accuracy. Thus, for the first time, this work illustrates the
potential of SSOP for use in challenging settings where motion, depth and real-time feedback are
critical.

Fig. 7. Single-frame excerpt from video recording of a moving hand (Visualization 1): Raw
input data, 3D profile, absorption coefficient and reduced scattering coefficient. From top to
bottom: SSOP Filtering, SSOP Deep Learning Convolution 7× 1, SSOP Deep Learning
Convolution 7× 7.

4. Discussion

Single snapshot imaging of optical properties was initially designed to provide fast acquisition
and rapid processing but suffered from degraded visual quality compared with SFDI. Leveraging
the recent developments in Deep Learning together with GPU-accelerated computation we
demonstrated herein that SSOP is able to achieve reconstructive performances comparable to
7-phase SFDI with concurrent sample profile correction, leading to errors as low as 7.5± 2.7%
for a complex object such as a hand and ex vivo pig organs. Such technology can readily be
deployed in the intraoperative room to guide surgeons by offering real-time visualization feedback
of functional and structural biomarkers.

Of note, it is important to highlight that real time capabilities were achieved thanks to the use of
a relatively simplistic CNN architecture (comprising less than 2× 104 parameters) coupled with
low-level GPU implementation. Despite the use of a small size DL architecture, our approach
allowed pushing the limits of SSOP to match data accuracy of SFDI. To obtain such result, the
method combines the advantages of U-NET network demodulation and rapid GPU processing. It

https://doi.org/10.6084/m9.figshare.12302207
https://doi.org/10.6084/m9.figshare.12302207
https://doi.org/10.6084/m9.figshare.12302207
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is however interesting to note that simpler implementations such as SSOP Filtering demonstrate
good results despite edge artifacts with reconstruction errors as low as 8.7± 2.6% and 9.3± 2.5%
for absorption and reduced scattering, respectively. Though, such results using SSOP Filtering
are possible only when state-of-the-art 2D anisotropic filtering is properly implemented, as
described in prior work [12].
Another interesting observation is that using the SSOP Deep Learning methods described

here, accurate and good visual quality of complex object can be performed at spatial frequencies
as low as 0.2mm−1. Although not demonstrated, the use of frequencies that are typically lower
than 0.3mm−1 seems preferable to allow deeper penetration of the photons and better signal to
noise ratio (amplitude modulation decreases significantly with spatial frequency). As such, the
use of the presented SSOP DL methodology allows for a more reliable use of SFDI methods for
healthcare application that necessitate real-time employability.
However, this work is not without limitations. The performance of a trained network always

depends on the training dataset. In our case, we avoided the 3 phases SFDI acquisition signal
to noise ratio limitation when spatial frequency increases by using 7 phases SFDI acquisition.
Despite this precaution, SFDI ground truth at spatial frequencies 0.3mm−1 and 0.4mm−1 are
still subject to some imperfections, which likely affect the network training and subsequent
reconstruction upon inference (see Fig. 3–5). These artifacts could explain, in part, why the
error values for absorption and reduced scattering are not decreasing when increasing the spatial
frequency from 0.3mm−1 to 0.4mm−1.
Another classical limitation regarding the datasets used for training in DL is the variety of

configurations offered by the sample. Including more images of organs having different shapes
and edge discontinuities would likely improve the network accuracy. Indeed, this was observed
in previously published work [33] and noted as crucial for model generalizability.

This study highlights also the trade-off that exists between the choice of the spatial frequency
used for acquisition and the capacity of SSOP to provide both accurate and high visual quality
images. One can notice for all the SSOP Filtering images obtained at low frequency that the
capability to retrieve the structure of the hand is limited by the half-period of the spatial frequency
used.
Overall, this study demonstrates that with the combination of a simple (small-size, 2× 104

parameters) DNN and low-level GPU implementation, accurate and high visual quality profile-
corrected SSOP can be performed in real time for one wavelength. Since our goal is to
provide interpretable information to healthcare practitioners, additional wavelengths will need to
be acquired to obtain interpretable physiological parameters such as oxy-hemoglobin, deoxy-
hemoglobin, lipids or water content. With a 18ms processing time using the best performing
method (DL conv 7× 7), at present only 2 wavelengths could reasonably be processed to meet
real-time definition (i.e. frame rate faster than 25 frames per second). However, due to the
rapid increase in GPU computing power and their low price, we expect that capabilities can be
extended easily to process more than 2 wavelengths.
Finally, all code and data used for this work is available at www.healthphotonics.org under

the resources tab. This is an open initiative for transparency and with the objective to share and
accelerate developments in the field of SFDI. Sources codes, raw data as well as executable code
readily usable can be downloaded. Other resources such as www.openSFDI.org can be used to
fabricate a SFDI system that can be used with the codes provided here [23].
In summary, this work lays the foundation for real-time multispectral quantitative diffuse

optical imaging for surgical guidance and healthcare applications.

5. Conclusion

In this work, using a simple (less than 2× 104 parameters) convolutional deep learning architecture
and low-level GPU implementation allowed to push the limits of SSOP to match data accuracy of

http://www.healthphotonics.org
http://www.openSFDI.org
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SFDI with a real-time capability. In particular, we show that by designing a computationally
inexpensive twin U-Net architecture for both the demodulation stage and the sample profile
extraction stage, along with a custom-made GPU-accelerated implementation using C CUDA,
megapixel profile-corrected optical properties (absorption and reduced scattering) maps were
extracted in 18ms with high visual quality and preserving a high accuracy. This work contributes
to the development of a real-time, quantitative, and wide-field imaging for surgical guidance.
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